Identities for the Classical Polynomials Through Sums of Liouville Type
نویسندگان
چکیده
Polynomials defined recursively over the integers such as Dickson polynomials, Chebychev polynomials, Fibonacci polynomials, Lucas polynomials, Bernoulli polynomials, Euler polynomials, and many others have been extensively studied in the past. Most of these polynomials have some type of relationship between them and share a large number of interesting properties. They have been also found to be topics of interest in many different areas of pure and applied sciences. Most recently, some of these families of polynomials have been found to be useful in cryptography and related topics, which keep making them a very interesting area of research for many people in this era of communication. In this paper, we use a sum of Liouiville type to prove new properties concerning many of these families of polynomials. The following notations and definitions will be adopted throughout this paper. The sets of positive integers, nonnegative integers, integers, real numbers, and complex numbers are respectively denoted by N, N0, Z, R, and C. The sets of even positive integers and the set of odd positive integers will be written 2N and 2N − 1 respectively and the sets of even integers and odd integers will be written 2Z and 2Z − 1 respectively. The Euler phi
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملBinomial Identities Involving The Generalized Fibonacci Type Polynomials
We present some binomial identities for sums of the bivariate Fi-bonacci polynomials and for weighted sums of the usual Fibonacci polynomials with indices in arithmetic progression.
متن کاملIDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS
Abstract. The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss’s multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iter...
متن کاملSome Sums of Legendre and Jacobi Polynomials
We prove identities involving sums of Legendre and Jacobi polynomials. The identities are related to Green’s functions for powers of the invariant Laplacian and to the Minakshisundaram-Pleijel zeta function.
متن کاملPolynomials and Identities on Real Banach Spaces
In our present paper we study the duality theory and linear identities for real polynomials and functions on Banach spaces, which allows for a unified treatment and generalization of some classical results in the area. The basic idea is to exploit point evaluations of polynomials, as e.g. in [Rez93]. As a by-product we also obtain a curious generalization of the well-known Hilbert lemma on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012